
Using Technology to Help With 
GRC in Public Cloud and Modern 
Application Environments
Shain Singh
Cloud/5G Security Architect [APCJ]
shsingh@ieee.org

May 2021



2

Who am I?

Shain Singh
Cloud/5G Security Architect @F5

Social

Professional Memberships

https://linkedin.com/in/shsingh

shsingh@ieee.org

https://twitter.com/shainsingh

https://github.com/shsingh

https://shain.io

https://linkedin.com/in/shsingh
mailto:shsingh@ieee.org
https://twitter.com/shainsingh
https://github.com/shsingh
https://shain.io/


3

Why this talk?
Make Security Great Again™

• Blue Teaming should be as fun as Red Teaming

• Create cultural shift in organizations by embracing DevOps principles
− Security should move from a “NO by default” to a “YES with caveats”

− Meeting developers halfway encourages them to do the same

• Leverage toolsets and methodologies that are becoming common-place for application and infrastructure 
deployment

Disclaimer

• I am not an expert, I am a curious security practitioner learning how these new technologies can help with 
raising the bar



4

Cloud adoption

Forrester [2018] - The Growing Importance Of Process To Digital Transformation

“What is your primary focus for process 
improvement efforts?”

Software Architecture and Design InfoQ Trends Report—April 2020

https://www.forrester.com/report/The+Growing+Importance+Of+Process+To+Digital+Transformation/-/E-RES143158
https://www.infoq.com/articles/architecture-trends-2020/


5

Container adoption



6

Compliance can assist to set guardrails



7

Industry standards define deployment patterns

Cloud Controls Matrix
Security Guidance For Critical Areas of Focus in Cloud Computing Benefits, Risks and Recommendations For Information Security

CIS Benchmarks

Secure Cloud Computing Architecture

Cybersecurity Framework

https://cloudsecurityalliance.org/artifacts/csa-ccm-v-3-0-1-11-12-2018-FINAL/
https://cloudsecurityalliance.org/artifacts/security-guidance-v4/
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://www.cisecurity.org/cis-benchmarks/
https://www.disa.mil/-/media/Files/DISA/News/Events/Symposium-2019/1-Del-RosarioSecure-Cloud-Computing-Architecture-SCCA-Program-Overviewapproved-Final.ashx
https://www.nist.gov/cyberframework


8

Cloud native technologies

https://www.cncf.io

Graduated Projects Incubating Projects

https://www.cncf.io/


9

Policy and Controls



10

Why use a service mesh?
• The distributed cross-domain nature of microservices needs secure token service (STS), key management and encryption 

services for authentication and authorization, and secure communication protocols. 
• The ephemeral nature of clustered containers (by which microservices are implemented) calls for secure service discovery. 
• The availability requirement calls for: 

• (a) resiliency techniques, such as load balancing, circuit breaking, and throttling
• (b) continuous monitoring (for the health of the service). 

• The service mesh is the best-known approach that can facilitate specification of these requirements at a level of abstraction 
such that it can be uniformly and consistently defined while also being effectively implemented without making changes to 
individual microservice code.çç

• Deployment architecture in cloud-native applications now consists of loosely coupled components (microservices), with all 
application services provided through a dedicated infrastructure (service mesh) independent of the application code. 

• Two critical security requirements in this architecture are 
• (a) to build the concept of zero trust by enabling mutual authentication in communication between any pair of services 
• (b) a robust access control mechanism based on an access control model such as Attribute-based Access Control 

(ABAC) that can be used to express a wide set of policies and is scalable in terms of user base, objects (resources), and 
deployment environment.

NIST SP 800-204A - Building Secure Microservices-based Applications Using Service-Mesh Architecture 

NIST SP 800-204B - Attribute-based Access Control for Microservices-based Applications using a Service Mesh

https://csrc.nist.gov/publications/detail/sp/800-204a/final
https://csrc.nist.gov/publications/detail/sp/800-204b/draft


11

What is a service mesh?

Components Security Architecture



12

Example – vendor implementation of service mesh 

Pod 
01

Pod 
02

Plaintext or TLS 
1.2

Traditional
Existing
Switch/Tap

Aspen Mesh

Existing 
Switch/Tap

Pod 
01

Pod 
02

Never hits the switch
TLS 1.3 (forward 
secrecy)

Kubernetes

ObservabilityDistributed 
Tracing

Aspen Mesh
Rapid Resolve

Aspen Mesh 
Packet Inspector

Challenges
• Packet-level inspection of flows in container environment
• Key management and mTLS 1.3 PFS challenges
• Lawful intercept and compliance requirements
• Leverage existing packet broker investment
• Operations troubleshooting, knowledge and training

Solution: Aspen Mesh Packet Inspector
• Inter-service capture at sidecar
• Pre-encryption tapping
• Compatible with TLS 1.3 Forward Secrecy
• Integrates into existing infrastructure & automation
• Scalable and extensible



13

What are SPIFFE/SPIRE?

• A set of specifications that cover how a workload should retrieve and use its identity
• SPIFFE ID
• SPIFFE Verifiable Identity Documents (SVIDs)
• The SPIFFE Workload API

• The SPIFFE Runtime Environment
• Open-source Reference Implementation that applies the SPIFFE Workload API for a variety of 

platforms and environments
• Highly extensible through plug-ins

https://spiffe.io/docs/latest/spiffe-about/overview/

https://spiffe.io/docs/latest/spire-about/

https://spiffe.io/docs/latest/spiffe-about/overview/
https://spiffe.io/docs/latest/spire-about/


14

SPIFFE Overview



15

What is OPA?

Service

OPA

Policy 
(Rego)

Data
(JSON)

Request

Policy
Decision

Policy
Query

Linux PAM

Input can be ANY JSON value Output can be ANY JSON value

Enforcement is decoupled from 
decision-making.

https://www.openpolicyagent.org/

https://www.openpolicyagent.org/


16

OPA Overview



17

Example – Istio + SPIFFE + OPA



18

Compliance as Code



19

Compliance as Code

• Set of open-source tools for security compliance and vulnerability assessment
• Security Content Automation Protocol (SCAP) is a framework that supports automated configuration, 

vulnerability and patch checking, technical control compliance activities, and security measurement
• SCAP standard includes:

• Extensible Configuration Checklist Description Format (XCCDF)
• Open Vulnerability and Assessment Language (OVAL)
• DataStream
• Asset Reporting Format (ARF)
• Common Platform Enumeration (CPE)
• Common Vulnerabilities and Exposures (CVE)
• Common Weakness Enumeration (CWE)

• Open-source testing framework with human- and machine-readable language for specifying compliance, security 
and policy requirements

• Uses Infrastructure as Code principles to keep compliance in Source Code Management (SCM)
• Tests can be run locally, remotely or as part of CI/CD pipelines for continuous compliance
• Highly extensible and support for large ecosystem of software

https://www.open-scap.org/

https://inspec.io/

https://www.open-scap.org/
https://inspec.io/


20

Inspec

Automating Security Validation Using InSpec

Processing InSpec Results



21

Example – DevSecOps + Inspec



22

Challenges



23

Challenges
Handling exceptions

• Use of third-party software
− How should vendor software be handled when security and compliance issues are found (e.g. break the build process?)

• What mechanisms to use for alert management from security pipeline processes? 
− Multiple integration scenarios such as Jira for bug/defect tracking and DefectDojo for security violation tracking

Organisational Culture

• Moving to a DevSecOps way of working requires significant work 
− People are almost always the hardest to change (DevSecOps involves People, Process and Technology)



24

Why now?



25

Average days between “HIGH” AND “CRITICAL” CVEs released

1.4

0.9

0.6

0.2
0.3

1.7

0.8

0.5
0.4

0.5

0.0

0.5

1.0

1.5

2.0

2014 2015 2016 2017 2018
High Critical

Protecting against Abuse of Functionality

9-12 
HOURS



26

Protecting against Abuse of Intent



27

Further Information
References

• NIST DevSecOps

• NIST 800-24A Building Secure Microservices-based Applications Using Service-Mesh Architecture

• NIST 800-24B Attribute-based Access Control for Microservices-based Applications using a Service Mesh

• OWASP DevSecOps Maturity Model

Technical

• DoD Enterprise DevSecOps Initiative

• Security Hardening and Baseline profiles

• MITRE STIG Inspec profiles

https://csrc.nist.gov/projects/devsecops
https://csrc.nist.gov/publications/detail/sp/800-204a/final
https://csrc.nist.gov/publications/detail/sp/800-204b/draft
https://owasp.org/www-project-devsecops-maturity-model/
https://www.nist.gov/system/files/documents/2021/02/22/05%20-%20Nicolas%20-%20DoD%20Enterprise%20DevSecOps%20Initiative%20-%20Keynote%20Presentation%20v2.0-w%20ZT.pdf
https://dev-sec.io/
https://github.com/mitre


28

Slides available at

https://oi.shain.io/presentations

https://oi.shain.io/presentations

